Pulmonary embolism (PE)

Pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches by a substance that has travelled from elsewhere in the body through the bloodstream (embolism). Usually this is due to embolism of a thrombus (blood clot) from the deep veins in the legs, a process termed venous thromboembolism.

A small proportion is due to the embolization of air, fat or amniotic fluid. The obstruction of the blood flow through the lungs and the resultant pressure on the right ventricle of the heart leads to the symptoms and signs of PE. The risk of PE is increased in various situations, such as cancer and prolonged bed rest.

Chest spiral CT scan with radiocontrast agent showing multiple filling defects of principal branches of the pulmonary arteries, due to acute and chronic pulmonary embolism.Source.

Chest spiral CT scan with radiocontrast agent showing multiple filling defects of principal branches of the pulmonary arteries, due to acute and chronic pulmonary embolism.

 

The gold standard for diagnosing pulmonary embolism (PE) is pulmonary angiography. Pulmonary angiography is used less often due to wider acceptance of CT scans, which are non-invasive.
Selective pulmonary angiogram revealing significant thrombus (labelled A) causing a central obstruction in the left main pulmonary artery. ECG tracing shown at bottom.Source.

CT pulmonary angiography (CTPA) is a pulmonary angiogram obtained using computed tomography (CT) with radiocontrast rather than right heart catheterization. Its advantages are clinical equivalence, its non-invasive nature, its greater availability to patients, and the possibility of identifying other lung disorders from the differential diagnosis in case there is no pulmonary embolism. Assessing the accuracy of CT pulmonary angiography is hindered by the rapid changes in the number of rows of detectors available in multidetector CT (MDCT) machines. According to a cohort study, single-slice spiral CT may help diagnose detection among patients with suspected pulmonary embolism . In this study, the sensitivity was 69% and specificity was 84%. In this study which had a prevalence of detection was 32%, the positive predictive value of 67.0% and negative predictive value of 85.2% (click here to adjust these results for patients at higher or lower risk of detection). However, this study’s results may be biased due to possible incorporation bias, since the CT scan was the final diagnostic tool in patients with pulmonary embolism. The authors noted that a negative single slice CT scan is insufficient to rule out pulmonary embolism on its own. A separate study with a mixture of 4 slice and 16 slice scanners reported a sensitivity of 83% and a specificity of 96%. This study noted that additional testing is necessary when the clinical probability is inconsistent with the imaging results. CTPA is non-inferior to VQ scanning, and identifies more emboli (without necessarily improving the outcome) compared to VQ scanning.

CT pulmonary angiography (CTPA) showing a saddle embolus and substantial thrombus burden in the lobar branches of both main pulmonary arteries.”Source.

CT pulmonary angiography (CTPA) showing a saddle embolus and substantial thrombus burden in the lobar branches of both main pulmonary arteries. Source.

Ventilation-perfusion scintigraphy in a woman taking hormonal contraceptives and valdecoxib.
 

 

Low probability diagnostic tests/non-diagnostic tests

Tests that are frequently done that are not sensitive for PE, but can be diagnostic.

Chest X-rays are often done on patients with shortness of breath to help rule-out other causes, such as congestive heart failure and rib fracture. Chest X-rays in PE are rarely normal, but usually lack signs that suggest the diagnosis of PE (e.g. Westermark sign, Hampton’s hump).
Ultrasonography of the legs, also known as leg doppler, in search of deep venous thrombosis (DVT). The presence of DVT, as shown on ultrasonography of the legs, is in itself enough to warrant anticoagulation, without requiring the V/Q or spiral CT scans (because of the strong association between DVT and PE). This may be valid approach in pregnancy, in which the other modalities would increase the risk of birth defects in the unborn child. However, a negative scan does not rule out PE, and low-radiation dose scanning may be required if the mother is deemed at high risk of having pulmonary embolism.


Source: Text Images

Related radgray Video: Pulmonary embolism CT scan

Number of View: 5566

Leave a comment