Magnetic resonance neurography

Magnetic resonance neurography (MRN) is the direct imaging of nerves in the body by optimizing selectivity for unique MRI water properties of nerves. It is a modification of magnetic resonance imaging.
Continue reading…

 

Real-time MRI

Real-time magnetic resonance imaging (MRI) refers to the continuous monitoring (“filming”) of moving objects in real time. Because MRI is based on time-consuming scanning of k-space, real-time MRI was possible only with low image quality or low temporal resolution. Using an iterative reconstruction algorithm these limitations have recently been removed: a new method for real-time […]
Continue reading…

 

The ARCO Classification Of Osteonecrosis

By the ARCO-Committee on Terminology and Staging Terminology: Bone in an organ that consists of mineralized and non-mineralized tissue. Bone necrosis is a disease which causes death of bone and is called “OSTEONECROSIS”
Continue reading…

 

How MRI works

The body is largely composed of water molecules. Each water molecule has two hydrogen nuclei or protons. When a person goes inside the powerful magnetic field of the scanner, the magnetic moments of some of these protons changes, and aligns with the direction of the field. In an MRI machine a radio frequency transmitter is […]
Continue reading…

 

MRI versus CT

A computed tomography (CT) scanner uses X-rays, a type of ionizing radiation, to acquire its images, making it a good tool for examining tissue composed of elements of a higher atomic number than the tissue surrounding them, such as bone and calcifications (calcium based) within the body (carbon based flesh), or of structures (vessels, bowel). […]
Continue reading…

 

Other specialized MRI techniques

Field of research and new methods and variants are often published when they are able to get better results in specific fields. Examples of these recent improvements are T*2-weighted turbo spin-echo (T2 TSE MRI), double inversion recovery MRI (DIR-MRI) or phase-sensitive inversion recovery MRI (PSIR-MRI), all of them able to improve imaging of the brain […]
Continue reading…

 

Susceptibility weighted imaging (SWI)

Susceptibility weighted imaging (SWI), is a new type of contrast in MRI different from spin density, T1, or T2 imaging. This method exploits the susceptibility differences between tissues and uses a fully velocity compensated, three dimensional, RF spoiled, high-resolution, 3D gradient echo scan. This special data acquisition and image processing produces an enhanced contrast magnitude […]
Continue reading…

 

Multinuclear imaging

Hydrogen is the most frequently imaged nucleus in MRI because it is present in biological tissues in great abundance. However, any nucleus with a net nuclear spin could potentially be imaged with MRI. Such nuclei include helium-3, carbon-13, fluorine-19, oxygen-17, sodium-23, phosphorus-31 and xenon-129. 23Na, 31P and 17O are naturally abundant in the body, so […]
Continue reading…

 

Magnetic resonance guided focused ultrasound

In MRgFUS therapy, ultrasound beams are focused on a tissue—guided and controlled using MR thermal imaging—and due to the significant energy deposition at the focus, temperature within the tissue rises to more than 65 °C (150 °F), completely destroying it. This technology can achieve precise ablation of diseased tissue. MR imaging provides a three-dimensional view […]
Continue reading…

 

Current density imaging

Current density imaging (CDI) endeavors to use the phase information from images to reconstruct current densities within a subject. Current density imaging works because electrical currents generate magnetic fields, which in turn affect the phase of the magnetic dipoles during an imaging sequence.
Continue reading…